大家好,今天小编来为大家解答拟南芥稳定表达方法这个问题,瞬时表达与稳定表达很多人还不知道,现在让我们一起来看看吧!
拟南芥中的什么基因转化到原生质体中进行瞬时表达
拟南芥作为模式植物在生物学研究中有着十分重要的作用和极大的优势。本文以Columbia野生型拟南芥为材料,用酶解法对拟南芥叶肉进行原生质体分离,用PEG介导的转化法将外源基因转化到原生质体中进行瞬时表达。文章着重分析了影响拟南芥叶肉原生质体分离和转化的因素,最终确定了原生质体的最优分离条件,建立了以拟南芥叶肉原生质体为基础的瞬时表达体系。主要实验结果如下: 1.拟南芥叶肉原生质体分离的最优酶液组成及浓度。用纤维素酶R-10、半纤维素酶、果胶酶、离析酶R-10、崩溃酶的不同酶类组合对拟南芥叶肉进行原生质体分离,结果发现,在CPW盐溶液中附加1.5%纤维素酶R-10及0.5%离析酶R-10时,分离效率最高,原生质体个数达到9.55×10~6/gFW,此时细胞碎片数量也最少。 2.最佳酶解条件。分别对酶解时间、酶液PH等因素进行分析。结果发现,酶PH为6.0,28℃黑暗条件酶解4h时,原生质体产量和活力最高(产量:11.42×10~6个/gFW,活力:90.2%)。 3.原生质体稳定性与活力测定。选择甘露醇做为渗透压调节剂使原生质体细胞保持完态,用FDA染色法检测原生质体活力。结果发现,拟南芥叶肉原生质体在0.4M甘露醇的渗透压环境中可以保持完态,此时破碎的细胞最少,原生质体活力最高,达到90.1%。 4.瞬时表达体系的建立。选择内质网膜内嵌蛋白SIP及肌动蛋白相关蛋白ARP6进行研究。通过RT-PCR扩增得到SIP(720bp)基因及ARP6(1200bp)基因,再将它们分别构建到瞬时表达载体pA7-YFP上,用PEG法将其转化入拟南芥叶肉原生质体进行表达。分析了PEG浓度,质粒DNA含量,原生质体个数等因素对转化的影响。结果发现,转化效率在一定范围内随PEG浓度及质粒DNA含量的升高而升高,当转化体系中PEG浓度为20%,质粒DNA含量为20μg,原生质体细胞数为2.5×10~4个时转化效率最高(69.37%)。
拟南芥C基因单独表达形成什么
A、由题干信息“用生长素极性运输抑制剂处理正常拟南芥,也会造成相似的花异常”,说明生长素与花的发育有关,A正确; B、由题干信息“用生长素极性运输抑制剂处理正常拟南芥,也会造成相似的花异常”,说明生长素极性运输与花的发育有关,B正确; C、根据题干信息“P基因的突变体表现为花发育异常”,可推测P基因起作用的机制,如P基因可能与生长素抑制物的合成等有关,C正确; D、抑制剂只能对生长素的极性运输起抑制作用,并不能诱发P基因的突变,D错误.故选:D.
拟南芥叶子发红
冬天天气寒冷,各种植物仍能渡过严寒的冬季,来年继续生长、开花、结果。奥秘在哪里呢?
原来植物在寒冷到来之前,在生理上相应地做出各种适应性反应:如可溶性糖渡度的提高,就可以提高细胞溶液浓渡,使水点降低。还可以缓冲原生质过度脱水,保护原生质胶体不致遇冷凝固。另外糖分子还有巨大的表面活动能力,可以吸附在细胞器的表面之上,减弱它们的生命能力。细胞内糖多,渗透压加大,保留水分多,减少外出结冰。还有的植物通过降低自身含水量,以适应低温条件,安全渡过寒冷的冬季。
当初冬温度降到5度左右,冬小麦的地上生长基本停止,但光合作用仍继续缓慢进行,这时所合成的产物并不转化成淀粉或其他非溶性物质,而是以可溶性糖类(主要是葡萄糖)积存于细胞中。由于冬季麦苗叶绿素形成少,细胞呈中性或微酸性,此时,麦苗颜色开始变
红,这才是麦苗抗寒能力强,生长正常的一种标志。
果树花芽也能安全越冬,才能使来年花开满树,结出丰收的果实。这主要靠得是花芽内部含水量的变化。当气温下降时,花芽迅速排出内部的水,使芽内的汁液达到高度渡缩的程度。这种高渡度汁液具有极强的抗冻能力,它在严寒时也不会结冰因此,防止了细胞膜由于冰冻而引起破裂,即使气温下降到零下30度时,花芽内细胞仍能安然无恙。
1.低温下植物的适应性生理生化变化
在冬季严寒来临之前,随着日照的缩短和气温的降低,植物体内会发生一系列适应低温的生理生化变化,从而提
这种逐步提高抗寒能力的适应过程称为抗寒锻炼(coldhardening)或低温训化(coldacclimation)。
·晚秋或早春寒潮突然袭击植物就易受害
经适当的抗寒锻炼过程,植物逐渐完成适应低温的一系列代谢变化,获得较强的抗寒性。
我国北方晚秋时,植物内部的抗寒锻炼还未完成,抗寒力差;在早春,温度已回升,植物的抗寒力逐渐下降。
植物抗寒锻炼过程中体内发生的适应性生理变化
(1)组织的含水量降低,而束缚水的相对含量增高。
(2)呼吸减弱消耗减少.有利于糖分等的积累,植物的整个代谢强度减弱,抗逆性增强。
(3)ABA含量增多,生长停止,进入休眠
·冬小麦的核膜口逐渐关闭,细胞核与细胞质之间物质交流停止,细胞分裂和生长活动受到抑制,植物进入休眠。
·植物进入深度休眠后,其抗寒性能力显著增强。
可溶性糖含量增加,对细胞的生命物质和生物膜起保护作用。
可增加细胞液浓度,降低冰点,提高原生质保水能力,保护蛋白质胶体不致遇冷变性凝聚;可进一步转化为其它
保护物质(如磷脂、氨基酸等)和能源.
在抗寒锻炼中,氨基酸的含量也增多.
脯氨酸的含量增加更为明显,是防冻剂或膜的稳定剂,对植物适应多种逆境具有重要作用。
2.低温诱导蛋白(Coldacclimationprotein)
植物经低温诱导能使某些特定的基因活化,并得以表达合成一组新蛋白。
近年来,已有近百种植物低温诱导蛋白被发现和研究,但还不清楚它们在提高植物抗寒性过程中的机理。
抗冻蛋白(antifreezeproteinAFP)
是生活在两极冰水中的鱼类血液中含有的糖蛋白.能降低细胞间隙体液冰点。
植物本身也可能具有与动物中类似的抗冻蛋白和基于相似原理的抗冻能力。
拟南芥冷调节蛋白(coldyreguatedprotein.COR)COR6.6蛋白
胚胎发育晚期丰富蛋白(lateembryogenesisabunndantprotein,LEA)
植物在胚胎发育晚期,种子脱水时大量产生的蛋白质。
多数是高度亲水、沸水中稳定的可溶性蛋白.
植物在低温诱导下也能表达多种LEA蛋白。
有助于提高植物在冰冻时忍受脱水胁迫的能力,减少细胞冰冻失水。
多数LEA蛋白也能为干旱或外源ABA诱导。
用人工或自然的方法,对萌动的种子或幼苗进行适度的低温处理,提高其抗寒性。
细胞内的糖含量增加,束缚水/自由水比值增大,原生质的粘度、弹性增大,代谢活动减弱.
广泛用于果树,使其矮化,促进花芽分化。
能抑制GAs的合成,提高树木的抗寒性。
能在常温下使植物抗寒性提高,同时诱导多种低温诱导基因表达,产生低温诱导蛋白。
提高越冬和早春作物的土壤温度,保护植物抵御寒害
适时播种、培土、增施磷钾肥,特别是厩肥和绿肥压青。
在寒流霜冻来临之前,熏烟、冬灌、盖草等保护植物.
好了,文章到这里就结束啦,如果本次分享的拟南芥稳定表达方法和瞬时表达与稳定表达问题对您有所帮助,还望关注下本站哦!